This page was generated from doc/notebooks/gepore_sf_outofplane.ipynb. [Download notebook.]
Interactive online versions: Binder badge. Open In Colab

Validation of the Zeeman effect with gepore_zeeman.f (field out of plane)

This example demonstrates the use of the gepore_zeeman.f program (a modification of the original gepore.f published in the PNR book chapter [1]) to validate a model with

The model is a simple slab with a single layer of magnetic material on a non-magnetic substrate.

[1] Majkrzak, C., O’Donovan, K. & Berk, N. (2006). Neutron Scattering from Magnetic Materials, edited by T. Chatterji, pp. 397–471. Amsterdam: Elsevier Science.

[1]:
# Install refl1d if it is not already installed
try:
    import refl1d
except ImportError:
    %pip install -q "refl1d @ git+https://github.com/reflectometry/refl1d"
    import refl1d
[2]:
import numpy as np
from refl1d.validation.gepore_runner import GeporeRunner

start a GeporeRunner instance

[3]:
runner = GeporeRunner()

QS = 0.001  # start value of Q
DQ = 0.0004  # step size in Q
NQ = 80  # number of Q points
Qz = np.arange(NQ) * DQ + QS

Define the sample as a list of layers

(note that the in-plane magnetization angle :math:`theta_M` doesn’t matter when the field is out-of-plane)

label

thickness (A)

\(\text{SLD}_N\) \((10^{-6}A)\)

\(\text{SLD}_M\) \((10^{-6}A)\)

\(\theta_{M}\) \((\text{degrees})\)

vacuum

0

0.0

0.0

90.0

magnetic

500

8.0

2.0

90.0

substrate

0

2.0

0.0

90.0

[4]:
Aguide = 0.00000001  # nearly zero to avoid division by zero in gepore.f
layers = [
    # depth rho rhoM thetaM phiM
    [0, 0.0, 0.0, 90.0, 0.0],
    [500, 8.0, 2.0, 90.0, 0.0],
    [0, 2.0, 0.0, 90.0, 0.0],
]
depth, rhoN, rhoM, thetaM, phiM = list(zip(*layers))

applied field, in Tesla:

[5]:
H = 0.5

Calculating with gepore_zeeman.f

The reflectivities are returned from gepore_zeeman.f in the order \((r_g^{++}, r_g^{+-}, r_g^{-+}, r_g^{--})\)

NOTE we use a value of \(\text{EPS} = -\text{Aguide}\)

[6]:
EPS = -Aguide
rgz = runner.run(layers, QS, DQ, NQ, EPS, H, zeeman_corrections=True)
Rgz = [np.abs(r) ** 2 for r in rgz]

Calculating reflectivity using Refl1D

magnetic_amplitude returns cross-sections in order \((r_1^{--}, r_1^{-+}, r_1^{+-}, r_1^{++})\), so we need to reverse them here to compare to gepore outputs

[7]:
from refl1d.sample.reflectivity import magnetic_amplitude

r1 = magnetic_amplitude(Qz / 2, depth, rhoN, 0, rhoM, thetaM, 0, Aguide, H)
R1 = np.abs(r1[::-1]) ** 2

Plots

[8]:
from matplotlib import pyplot as plt
[9]:
fig = plt.figure()
ax = fig.add_subplot(111)
xs_labels = ["++", "+-", "-+", "--"]
for i, label in enumerate(xs_labels):
    ax.plot(Qz, Rgz[i], label=f"gepore {label}")
ax.set_prop_cycle(None)
for i, label in enumerate(xs_labels):
    ax.plot(Qz, R1[i], "o", label=f"refl1d {label}", fillstyle="none")
ax.set_ylabel("Reflectivity")
ax.set_xlabel("2*kz_in")
ax.legend()
[9]:
<matplotlib.legend.Legend at 0x7fec46f569c0>
../_images/notebooks_gepore_sf_outofplane_15_1.png

The differences between the two reflectivity outputs are small, and are likely due to differences in the numerical implementation of the reflectivity calculation. Here is a plot of the differences:

[10]:
fig = plt.figure()
ax = fig.add_subplot(111)

for i, label in enumerate(xs_labels):
    ax.plot(Qz, 2 * (Rgz[i] - R1[i]) / np.abs(Rgz[i] + R1[i]), label=f"rel. diff {label}")
ax.set_ylabel("Relative Reflectivity difference")
ax.set_xlabel("2*kz_in")
ax.set_title("Difference between gepore and refl1d, normalized to sum")
ax.legend()
[10]:
<matplotlib.legend.Legend at 0x7fec46d23ef0>
../_images/notebooks_gepore_sf_outofplane_17_1.png