This page was generated from doc/notebooks/gepore_nsf.ipynb. [Download notebook.]
Interactive online versions: Binder badge. Open In Colab

Validation of non-Spin-Flip scattering with gepore.f

We can check a simple magnetic model \((\vec M \parallel \vec H)\) with no spin-flip scattering against:

We are using the Refl1D geometry convention where \(\text{Aguide} = 270^\circ, \theta_M = 270^\circ\) corresponds to an in-plane magnetic field with \(\vec M \parallel \vec H\). The sample will be a magnetic layer on a non-magnetic substrate, with a non-magnetic cap layer

[1] Majkrzak, C., O’Donovan, K. & Berk, N. (2006). Neutron Scattering from Magnetic Materials, edited by T. Chatterji, pp. 397–471. Amsterdam: Elsevier Science.

[1]:
# Install refl1d if it is not already installed
try:
    import refl1d
except ImportError:
    %pip install -q "refl1d @ git+https://github.com/reflectometry/refl1d"
    import refl1d
[2]:
import numpy as np
from refl1d.validation.gepore_runner import GeporeRunner

# start a GeporeRunner instance

runner = GeporeRunner()

QS = 0.001  # start value of Q
DQ = 0.0004  # step size in Q
NQ = 80  # number of Q points
Qz = np.arange(NQ) * DQ + QS

Define the sample as a list of layers:

label

thickness (A)

\(\text{SLD}_N\) \((10^{-6}A)\)

\(\text{SLD}_M\) \((10^{-6}A)\)

\(\theta_{M}\) \((\text{degrees})\)

vacuum

0

0.0

0.0

270

mag. layer

1000

8.0

2.0

270

cap layer

500

5.0

0.0

270

substrate

0

2.0

0.0

270

[3]:
Aguide = 270.0  # guide field in sample plane
layers = [
    # depth rho rhoM thetaM phiM
    [0, 0.0, 0.0, 270, 0],
    [1000, 8.0, 2.0, 270, 0.0],
    [500, 5.0, 0.0, 270, 0.0],
    [0, 2.0, 0.0, 270, 0.0],
]
depth, rhoN, rhoM, thetaM, phiM = list(zip(*layers))

applied field, in Tesla, shouldn’t matter for this calculation

[4]:
H = 0.5

Calculating with gepore.f

The reflectivities are returned from gepore.f in the order \((r_g^{++}, r_g^{+-}, r_g^{-+}, r_g^{--})\)

NOTE we use a value of \(\text{EPS} = -\text{Aguide}\)

[5]:
EPS = -Aguide
rg = runner.run(layers, QS, DQ, NQ, EPS, H, zeeman_corrections=False)
Rg = [np.abs(r) ** 2 for r in rg]

Calculating with the modified gepore_zeeman.f

A version of the original gepore.f that includes Zeeman energy corrections

[6]:
rgz = runner.run(layers, QS, DQ, NQ, EPS, H, zeeman_corrections=True)
Rgz = [np.abs(r) ** 2 for r in rgz]

Calculating reflectivity using Refl1D

magnetic_amplitude returns cross-sections in order \((r_1^{--}, r_1^{-+}, r_1^{+-}, r_1^{++})\), so we need to reverse them here to compare to gepore outputs

[7]:
from refl1d.sample.reflectivity import magnetic_amplitude, reflectivity_amplitude

r1 = magnetic_amplitude(Qz / 2, depth, rhoN, 0, rhoM, thetaM, 0, Aguide, H)
R1 = np.abs(r1[::-1]) ** 2

Calculating unpolarized reflectivity, with rhoN + rhoM and rhoN - rhoM

[8]:
rho_plus = np.array(rhoN) + np.array(rhoM)
rho_minus = np.array(rhoN) - np.array(rhoM)
sf = np.zeros_like(R1[0])
rnsf = (
    reflectivity_amplitude(Qz / 2, depth, rho_plus, 0, 0, None),
    sf,
    sf,
    reflectivity_amplitude(Qz / 2, depth, rho_minus, 0, 0, None),
)
Rnsf = [np.abs(r) ** 2 for r in rnsf]

Plots

[9]:
from matplotlib import pyplot as plt
[10]:
fig = plt.figure()
ax = fig.add_subplot(111)
xs_labels = ["++", "+-", "-+", "--"]
for i, label in enumerate(xs_labels):
    ax.plot(Qz, Rg[i], label=f"gepore {label}")
ax.set_prop_cycle(None)
for i, label in enumerate(xs_labels):
    ax.plot(Qz, R1[i], "o", label=f"refl1d {label}", fillstyle="none")
ax.set_ylabel("Reflectivity")
ax.set_xlabel("2*kz_in")
ax.set_title("Reflectivity with gepore.f and Refl1D")
ax.legend()
[10]:
<matplotlib.legend.Legend at 0x7f849735e6f0>
../_images/notebooks_gepore_nsf_17_1.png

The differences between the two reflectivity outputs are small, and are likely due to differences in the numerical implementation of the reflectivity calculation. Here is a plot of the differences:

[11]:
fig = plt.figure()
ax = fig.add_subplot(111)
xs_labels = ["++", "+-", "-+", "--"]
for i, label in enumerate(xs_labels):
    if not i == 1 and not i == 2:  # skip +- and -+
        ax.plot(Qz, 2 * (Rg[i] - R1[i]) / np.abs(Rg[i] + R1[i]), label=f"rel. diff {label}")
ax.set_ylabel("Relative Reflectivity difference")
ax.set_xlabel("2*kz_in")
ax.set_title("Difference between gepore and refl1d, normalized to sum")
ax.legend()
[11]:
<matplotlib.legend.Legend at 0x7f84971553d0>
../_images/notebooks_gepore_nsf_19_1.png
[12]:
fig = plt.figure()
ax = fig.add_subplot(111)

for i, label in enumerate(xs_labels):
    if not i == 1 and not i == 2:  # skip +- and -+
        ax.plot(Qz, 2 * (Rgz[i] - Rg[i]) / np.abs(Rgz[i] + Rg[i]), label=f"rel. diff {label}")
ax.set_ylabel("Relative Reflectivity difference")
ax.set_xlabel("2*kz_in")
ax.set_title("Difference between gepore and gepore_zeeman, normalized to sum")
ax.legend()
[12]:
<matplotlib.legend.Legend at 0x7f849401ff50>
../_images/notebooks_gepore_nsf_20_1.png
[13]:
fig = plt.figure()
ax = fig.add_subplot(111)
xs_labels = ["++", "+-", "-+", "--"]
for i, label in enumerate(xs_labels):
    if not i == 1 and not i == 2:  # skip +- and -+
        ax.plot(Qz, 2 * (Rnsf[i] - R1[i]) / np.abs(Rnsf[i] + R1[i]), label=f"rel. diff {label}")
ax.set_ylabel("Relative Reflectivity difference")
ax.set_xlabel("2*kz_in")
ax.set_title("Difference of refl1d (mag. kernel) and\n refl1d (unpol. kernel twice), normalized to sum")
ax.legend()
[13]:
<matplotlib.legend.Legend at 0x7f849718d6d0>
../_images/notebooks_gepore_nsf_21_1.png
[ ]: