Source code for refl1d.probe.data_loaders.snsdata

# This program is in the public domain
# Author: Paul Kienzle
"""
SNS data loaders

The following instruments are defined::

    Liquids, Magnetic

These are :class:`resolution.Pulsed` classes tuned with
default instrument parameters and loaders for reduced SNS data.
See :mod:`resolution` for details.
"""

import math
import re

import numpy as np
from bumps.data import parse_file

from ...probe.probe import make_probe
from .. import resolution
from ..instrument import Pulsed
from .rebin import rebin

## Estimated intensity vs. wavelength for liquids reflectometer
LIQUIDS_FEATHER = np.array(
    [
        (2.02555, 20.6369),
        (2.29927, 23.6943),
        (2.57299, 23.6943),
        (2.87409, 21.1146),
        (3.22993, 15.5732),
        (3.58577, 12.8981),
        (4.07847, 9.4586),
        (4.5438, 6.59236),
        (5.11861, 4.68153),
        (5.7208, 3.05732),
        (6.37774, 1.91083),
        (7.19891, 1.24204),
        (8.04745, 0.955414),
        (9.06022, 0.573248),
        (10.1825, 0.477707),
        (11.4142, 0.382166),
        (12.8102, 0.191083),
        (14.3431, 0.286624),
    ]
).T


[docs] def load(filename, instrument=None, **kw): """ Return a probe for SNS data. """ if instrument is None: instrument = Pulsed() header, data = parse_sns_file(filename) header.update(**kw) # calling parameters override what's in the file. # print "\n".join(k+":"+str(v) for k, v in header.items()) # Guess what kind of data we have if has_columns(header, ("Q", "dQ", "R", "dR", "L")): probe = QRL_to_data(instrument, header, data) elif has_columns(header, ("time_of_flight", "data", "Sigma")): probe = TOF_to_data(instrument, header, data) else: raise IOError("Unknown columns: " + ", ".join(header["columns"])) probe.title = header["title"] probe.date = header["date"] probe.instrument = header["instrument"] return probe
[docs] def has_columns(header, v): return len(header["columns"]) == len(v) and all(ci == si for ci, si in zip(header["columns"], v))
[docs] def QRL_to_data(instrument, header, data): """ Convert data to T, L, R """ Q, dQ, R, dR, L = data dL = resolution.binwidths(L) if "angle" in header and "slits_at_Tlo" in header: T = header.pop("angle", header.pop("T", None)) probe = instrument.probe(L=L, dL=dL, T=T, data=(R, dR), **header) else: T = resolution.QL2T(Q[0], L[0]) dT = resolution.dQdL2dT(Q[0], dQ[0], L[0], dL[0]) probe = make_probe(T=T, dT=dT, L=L, dL=dL, data=(R, dR), **header) return probe
[docs] def TOF_to_data(instrument, header, data): """ Convert TOF data to neutron probe. Wavelength is set from the average of the times at the edges of the bins, not the average of the wavelengths. Wavelength resolution is set assuming the wavelength at the edges of the bins defines the full width at half maximum. The correct answer is to look at the wavelength distribution within the bin including effects of pulse width and intensity as a function wavelength and use that distribution, or a gaussian approximation thereof, when computing the resolution effects. """ TOF, R, dR = data Ledge = resolution.TOF2L(instrument.d_moderator, TOF) L = resolution.TOF2L(instrument.d_moderator, (TOF[:-1] + TOF[1:]) / 2) dL = (Ledge[1:] - Ledge[:-1]) / 2.35 # FWHM is 2.35 sigma R = R[:-1] dR = dR[:-1] min_time, max_time = header.get("TOF_range", instrument.TOF_range) keep = np.isfinite(R) & np.isfinite(dR) & (TOF[:-1] >= min_time) & (TOF[1:] <= max_time) L, dL, R, dR = [v[keep] for v in (L, dL, R, dR)] T = np.array([header.get("angle", header.get("T", None))], "d") T, dT, L, dL = instrument.resolution(L=L, dL=dL, T=T, **header) probe = make_probe(T=T, dT=dT, L=L, dL=dL, data=(R, dR), **header) return probe
[docs] def parse_sns_file(filename): """ Parse SNS reduced data, returning *header* and *data*. *header* dictionary of fields such as 'data', 'title', 'instrument' *data* 2D array of data """ raw_header, data = parse_file(filename) header = {} # guess instrument from file name original_file = raw_header.get("F", "unknown") if "REF_L" in original_file: instrument = "Liquids" elif "REF_M" in original_file: instrument = "Magnetic" else: instrument = "unknown" header["instrument"] = instrument header["filename"] = original_file header["radiation"] = "neutron" # Plug in default instrument values for slits if "instrument" in header and header["instrument"] in INSTRUMENTS: instrument = INSTRUMENTS[header["instrument"]] header["d_s1"] = instrument.d_s1 header["d_s2"] = instrument.d_s2 # Date-time field for the file header["date"] = raw_header.get("D", "") # Column names and units columnpat = re.compile(r"(?P<name>\w+)\((?P<units>[^)]*)\)") columns, units = zip(*columnpat.findall(raw_header.get("L", ""))) header["columns"] = columns header["units"] = units # extra information like title, angle, etc. commentpat = re.compile(r"(?P<name>.*)\s*:\s*(?P<value>.*)\s*\n") comments = dict(commentpat.findall(raw_header.get("C", ""))) header["title"] = comments.get("Title", "") header["description"] = comments.get("Notes", "") # parse values of the form "Long Name: (value, 'units')" in comments valuepat = re.compile(r"[(]\s*(?P<value>.*)\s*, \s*'(?P<units>.*)'\s*[)]") def parse_value(valstr): d = valuepat.match(valstr).groupdict() return float(d["value"]), d["units"] if "Detector Angle" in comments: header["angle"], _ = parse_value(comments["Detector Angle"]) return header, data
[docs] def write_file(filename, probe, original=None, date=None, title=None, notes=None, run=None, charge=None): """ Save probe as SNS reduced file. """ ## Example header # F /SNSlocal/REF_L/2007_1_4B_SCI/2895/NeXus/REF_L_2895.nxs # E 1174593434.7 # D 2007-03-22 15:57:14 # C Run Number: 2895 # C Title: MK NR4 dry 032007_No2Rep0 # C Notes: MK NR 4 DU 53 dry from air # C Detector Angle: (0.0, 'degree') # C Proton Charge: 45.3205833435 # S 1 Spectrum ID ('bank1', (85, 151)) # N 3 # L time_of_flight(microsecond) data() Sigma() from datetime import datetime as dt parts = [] if original is None: original = filename if date is None: date = dt.strftime(dt.now(), "%Y-%m-%d %H:%M:%S") parts.append("#F " + original) parts.append("#D " + date) if run is not None: parts.append("#C Run Number: %s" % run) if title is not None: parts.append("#C Title: %s" % title) if notes is not None: parts.append("#C Notes: %s" % notes) parts.append("#C Detector Angle: (%g, 'degree')" % probe.T[0]) if charge is not None: parts.append("#C Proton Charge: %s" % charge) parts.append("") parts.append("#N 5") parts.append("#L Q(1/A) dQ(1/A) R() dR() L(A)") parts.append("") header = "\n".join(parts) probe.write_data(filename, columns=["Q", "dQ", "R", "dR", "L"], header=header)
[docs] class SNSData(object):
[docs] def load(self, filename, **kw): return load(filename, instrument=self, **kw)
# TODO: print "Insert correct slit distances for Liquids and Magnetic"
[docs] class Liquids(SNSData, Pulsed): """ Loader for reduced data from the SNS Liquids instrument. """ instrument = "Liquids" radiation = "neutron" feather = LIQUIDS_FEATHER wavelength = 2.0, 15.0 # wavelength = 0.5, 5 # wavelength = 5.5, 10 # wavelength = 10.5, 15 dLoL = 0.02 d_s1 = 230.0 + 1856.0 d_s2 = 230.0 d_moderator = 14.850 # moderator to detector distance TOF_range = (6000, 60000)
[docs] class Magnetic(SNSData, Pulsed): """ Loader for reduced data from the SNS Magnetic instrument. """ instrument = "Magnetic" radiation = "neutron" wavelength = 1.8, 14 dLoL = 0.02 d_s1 = 75 * 2.54 d_s2 = 14 * 2.54
# Instrument names assigned by reflpak INSTRUMENTS = { "Liquids": Liquids, "Magnetic": Magnetic, } # ===== utils ==============
[docs] def intensity_from_spline(Lrange, dLoL, feather): L0, L1 = Lrange n = math.ceil(math.log(L1 / L0) / math.log(1 + dLoL)) L = L0 * (1 + dLoL) ** np.arange(0, n) return (L[:-1] + L[1:]) / 2, rebin(feather[0], feather[1], L)
[docs] def boltzmann_feather(L, counts=100000, range=None): """ Return expected intensity as a function of wavelength given the TOF feather range and the total number of counts. TOF feather is approximately a boltzmann distribution with gaussian convolution. The following looks pretty enough; don't know how well it corresponds to the actual SNS feather. """ import scipy.stats y = np.linspace(-4, 4, 10) G = np.exp(-(y**2) / 10) x = np.arange(12, 85) B = scipy.stats.boltzmann.pmf(x, 0.05, counts, loc=16) BGz = np.convolve(B, G, mode="same") # if range is None: range = L[0], L[-1] # if range[0] > range[1]: range = range[::-1] # range = range[0]*(1-1e-15), range[1]*(1+1e-15) # z = np.linspace(range[0], range[1], len(BGz)) z = np.linspace(2, 16.5, len(BGz)) # Wavelength range for liquids pL = np.interp(L, z, BGz, left=0, right=0) nL = pL / sum(pL) * counts return nL