"""
Interface between the models and the fitters.
:class:`Fitness` defines the interface that model evaluators can follow.
These models can be bundled together into a :func:`FitProblem` and sent
to :class:`bumps.fitters.FitDriver` for optimization and uncertainty
analysis.
Summary of problem attributes::
# Used by fitters
nllf(p: Optional[Vector]) -> float # main calculation
bounds() -> Tuple(Vector, Vector) # or equivalent sequence
setp(p: Vector) -> None
getp() -> Vector
residuals() -> Vector # for LM, MPFit
parameter_residuals() -> Vector # for LM, MPFit
constraints_nllf() -> float # for LM, MPFit; constraint cost is spread across the individual residuals
randomize() -> None # for multistart
resynth_data() -> None # for Monte Carlo resampling of maximum likelihood
restore_data() -> None # for Monte Carlo resampling of maximum likelihood
name: str # DREAM uses this
chisq() -> float
chisq_str() -> str
labels() -> List[str]
summarize() -> str
show() -> None
load(input_path: str) -> None
save(output_path: str) -> None
plot(figfile: str, view: str) -> None
# Set/used by bumps.cli
model_reset() -> None # called by load_model
path: str # set by load_model
name: str # set by load_model
title: str = filename # set by load_moel
options: List[str] # from sys.argv[1:]
undefined:List[int] # when loading a save .par file, these parameters weren't defined
store: str # set by make_store
output_path: str # set by make_store
simulate_data(noise: float) -> None # for --simulate in opts
cov() -> Matrix # for --cov in opts
"""
# Don't include print_function in imports; since the model coded is exec'd
# in the __future__ context of this file, it would force the models to use the
# new print function syntax. load_problem() should be moved to its own file
# to avoid this issue.
from __future__ import division, with_statement
__all__ = ['Fitness', 'FitProblem', 'load_problem']
from dataclasses import dataclass
import logging
import os
import sys
import traceback
import warnings
import numpy as np
from numpy import inf, isnan, nan
from . import parameter, util
from .parameter import to_dict, Parameter, Variable, tag_all
from .formatnum import format_uncertainty
# Abstract base class:
# can use "isinstance" to check if a class implements the protocol
@util.runtime_checkable
@dataclass(init=False)
class Fitness(util.Protocol):
"""
Manage parameters, data, and theory function evaluation.
See :ref:`fitness` for a detailed explanation.
"""
def parameters(self) -> util.List[Parameter]:
"""
return the parameters in the model.
model parameters are a hierarchical structure of lists and
dictionaries.
"""
raise NotImplementedError()
def update(self):
"""
Called when parameters have been updated. Any cached values will need
to be cleared and the model reevaluated.
"""
raise NotImplementedError()
def numpoints(self):
"""
Return the number of data points.
"""
raise NotImplementedError()
def nllf(self):
"""
Return the negative log likelihood value of the current parameter set.
"""
raise NotImplementedError()
def resynth_data(self):
"""
Generate fake data based on uncertainties in the real data. For
Monte Carlo resynth-refit uncertainty analysis. Bootstrapping?
"""
raise NotImplementedError()
def restore_data(self):
"""
Restore the original data in the model (after resynth).
"""
raise NotImplementedError()
def residuals(self):
"""
Return residuals for current theory minus data.
Used for Levenburg-Marquardt, and for plotting.
"""
raise NotImplementedError()
def save(self, basename):
"""
Save the model to a file based on basename+extension. This will point
to a path to a directory on a remote machine; don't make any
assumptions about information stored on the server. Return the set of
files saved so that the monitor software can make a pretty web page.
"""
pass
def plot(self, view='linear'):
"""
Plot the model to the current figure. You only get one figure, but you
can make it as complex as you want. This will be saved as a png on
the server, and composed onto a results web page.
"""
pass
def no_constraints() -> float:
"""default constraints function for FitProblem"""
return 0
def fit_parameters(fitness: Fitness) -> util.List[Parameter]:
"""
Return a list of fittable (non-fixed) parameters in the model
"""
parameters = parameter.unique(fitness.parameters())
return [p for p in parameters if isinstance(getattr(p, 'slot', None), parameter.Variable) and not p.fixed]
def chisq_str(fitness: Fitness) -> str:
"""
Return a string representing the chisq equivalent of the nllf.
If the model has strictly gaussian independent uncertainties then the
negative log likelihood function will return 0.5*sum(residuals**2),
which is 1/2*chisq. Since we are printing normalized chisq, we
multiply the model nllf by 2/DOF before displaying the value. This
is different from the problem nllf function, which includes the
cost of the prior parameters and the cost of the penalty constraints
in the total nllf. The constraint value is displayed separately.
"""
pars = fit_parameters(fitness)
dof = fitness.numpoints() - len(pars)
if dof <= 0 or np.isnan(dof) or np.isinf(dof):
chisq_norm, chisq_err = 1., 0.
else:
#return 2./dof, 1./dof
from scipy.stats import chi2
npars = max(len(pars), 1)
chisq_norm, chisq_err = 2./dof, chi2.ppf(ONE_SIGMA, npars)/dof
chisq = fitness.nllf() * chisq_norm
text = format_uncertainty(chisq, chisq_err)
return text
def show_parameters(fitness: Fitness, subs: util.Optional[util.Dict[util.Any, Parameter]]=None):
"""Print the available parameters to the console as a tree."""
print(parameter.format(fitness.parameters(), freevars=subs))
print("[chisq=%s, nllf=%g]" % (chisq_str(fitness), fitness.nllf()))
@dataclass(init=False, eq=False)
class FitProblem:
r"""
*models* is a sequence of :class:`Fitness` instances.
*weights* is an optional scale factor for each model. A weighted fit
returns nllf $L = \sum w_k^2 L_k$. If an individual nllf is the sum
squared residuals then this is equivalent to scaling the measurement
uncertainty by $1/w$. Unless the measurement uncertainty is unknown,
weights should be in [0, 1], representing an unknown systematic
uncertainty spread across the individual measurements.
*freevars* is :class:`.parameter.FreeVariables` instance defining the
per-model parameter assignments. See :ref:`freevariables` for details.
Additional parameters:
*name* name of the problem
*constraints* is a list of Constraint objects, which have a method to
calculate the nllf for that constraint.
Also supports an alternate form which cannot be serialized:
A function which returns the negative log likelihood
of seeing the parameters independent from the fitness function. Use
this for example to check for feasible regions of the search space, or
to add constraints that cannot be easily calculated per parameter.
Ideally, the constraints nllf will increase as you go farther from
the feasible region so that the fit will be directed toward feasible
values.
*penalty_nllf* is the nllf to use for *fitness* when *constraints*
or model parameter bounds are not satisfied.
Total nllf is the sum of the parameter nllf, the constraints nllf and the
depending on whether constraints is greater than soft_limit, either the
fitness nllf or the penalty nllf.
New in 0.9.0: weights are now squared when computing the sum rather than
linear.
"""
name: util.Optional[str]
models: util.List[Fitness]
freevars: util.Optional[parameter.FreeVariables]
weights: util.Union[util.List[float], util.Literal[None]]
constraints: util.Optional[util.Sequence[parameter.Constraint]]
penalty_nllf: util.Union[float, util.Literal["inf"]]
_constraints_function: util.Callable[..., float]
_models: util.List[Fitness]
_parameters: util.List[Parameter]
_parameters_by_id: util.Dict[str, Parameter]
_dof: float = np.nan # not a schema field, and is not used in __init__
# _all_constraints: util.List[util.Union[Parameter, Expression]]
def __init__(self, models: util.Union[Fitness, util.List[Fitness]], weights=None, name=None,
constraints=None,
penalty_nllf="inf",
freevars=None,
soft_limit:util.Optional[float]=None, # TODO: deprecate,
auto_tag=False
):
if not isinstance(models, (list, tuple)):
models = [models]
if callable(constraints):
warnings.warn("convert constraints functions to constraint expressions", DeprecationWarning)
self._constraints_function = constraints
self.constraints = []
else:
self._constraints_function = self._null_constraints_function
# TODO: do we want to allow "constraints=a<b" or do we require a sequence "constraints=[a<b]"?
self.constraints = constraints if constraints is not None else []
if freevars is None:
names = ["M%d" % i for i, _ in enumerate(models)]
freevars = parameter.FreeVariables(names=names)
self.freevars = freevars
if auto_tag:
for index, model in enumerate(models):
model_name = model.name if model.name is not None else f"Model{index}"
tag_all(model.parameters(), model_name)
self._models = models
if weights is None:
weights = [1.0 for _ in models]
self.weights = weights
self.penalty_nllf = float(penalty_nllf)
self.set_active_model(0) # Set the active model to model 0
self.model_reset() # sets self._all_constraints
self.name = name
@staticmethod
def _null_constraints_function():
return 0.
@property
def fitness(self):
warnings.warn('Deprecated: use of problem.fitness will be removed at some point')
if len(self._models) == 1:
return self._models[0]
raise ValueError('problem.fitness is not defined')
@property
def dof(self):
return self._dof
# TODO: make this @property\ndef models(self): ...
@property
def models(self):
"""Iterate over models, with free parameters set from model values"""
try:
for i, f in enumerate(self._models):
self.freevars.set_model(i)
yield f
finally:
# Restore the active model after cycling, even if interrupted
self.freevars.set_model(self._active_model_index)
# noinspection PyAttributeOutsideInit
[docs]
def set_active_model(self, i):
"""Use free parameters from model *i*"""
self._active_model_index = i
self.active_model = self._models[i]
self.freevars.set_model(i)
[docs]
def model_parameters(self):
"""Return parameters from all models"""
pars = {}
pars['models'] = [f.parameters() for f in self.models]
free = self.freevars.parameters()
if free:
pars['freevars'] = free
return pars
[docs]
def to_dict(self):
return {
'type': type(self).__name__,
'name': self.name,
'models': to_dict(self._models),
'weights': self.weights,
'penalty_nllf': self.penalty_nllf,
# TODO: constraints may be a function.
'constraints': to_dict(self.constraints),
'freevars': to_dict(self.freevars),
}
def __repr__(self):
return "FitProblem(name=%s)" % self.name
[docs]
def valid(self, pvec):
"""Return true if the point is in the feasible region"""
return all(v in p.prior for p, v in zip(self._parameters, pvec))
[docs]
def setp(self, pvec):
"""
Set a new value for the parameters into the model. If the model
is valid, calls model_update to signal that the model should be
recalculated.
Returns True if the value is valid and the parameters were set,
otherwise returns False.
"""
#print("Calling setp with", pvec, self._parameters)
# TODO: do we have to leave the model in an invalid state?
# WARNING: don't try to conditionally update the model
# depending on whether any model parameters have changed.
# For one thing, the model_update below probably calls
# the subclass FitProblem.model_update, which signals
# the individual models. Furthermore, some parameters may
# related to others via expressions, and so a dependency
# tree needs to be generated. Whether this is better than
# clicker() from SrFit I do not know.
for v, p in zip(pvec, self._parameters):
p.value = v
# TODO: setp_hook is a hack to support parameter expressions in sasview
# Don't depend on this existing long term.
setp_hook = getattr(self, 'setp_hook', no_constraints)
setp_hook()
self.model_update()
[docs]
def getp(self):
"""
Returns the current value of the parameter vector.
"""
return np.array([p.value for p in self._parameters], 'd')
[docs]
def bounds(self):
"""Return the bounds for each parameter as a 2 x N array"""
limits = [p.prior.limits for p in self._parameters]
return np.array(limits, 'd').T if limits else np.empty((2, 0))
[docs]
def randomize(self, n=None):
"""
Generates a random model.
*randomize()* sets the model to a random value.
*randomize(n)* returns a population of *n* random models.
For indefinite bounds, the random population distribution is centered
on initial value of the parameter, or 1. if the initial parameter is
not finite.
"""
# TODO: split into two: randomize and random_pop
if n is None:
self.setp(self.randomize(n=1)[0])
return # Not returning anything since no n is requested
# TODO: apply hard limits on parameters
target = self.getp()
target[~np.isfinite(target)] = 1.
pop = [p.prior.random(n, target=v)
for p, v in zip(self._parameters, target)]
return np.array(pop).T
[docs]
def nllf(self, pvec=None) -> float:
"""
compute the cost function for a new parameter set p.
this is not simply the sum-squared residuals, but instead is the
negative log likelihood of seeing the data given the model parameters
plus the negative log likelihood of seeing the model parameters. the
value is used for a likelihood ratio test so normalization constants
can be ignored. there is an additional penalty value provided by
the model which can be used to implement inequality constraints. any
penalty should be large enough that it is effectively excluded from
the parameter space returned from uncertainty analysis.
the model is not actually calculated if any of the parameters are
out of bounds, or any of the constraints are not satisfied, but
instead are assigned a value of *penalty_nllf*.
this will prevent expensive models from spending time computing
values in the unfeasible region.
"""
if pvec is not None:
if self.valid(pvec):
self.setp(pvec)
else:
return inf
pparameter, pconstraints, pmodel, failing_constraints = self._nllf_components()
cost = pparameter + pconstraints + pmodel
#print("cost=",pparameter,"+",pconstraints,"+",pmodel,"=",cost, pvec)
if isnan(cost):
# TODO: make sure errors get back to the user
# print "point evaluates to nan"
# print parameter.summarize(self._parameters)
return inf
return cost
[docs]
def parameter_nllf(self) -> util.Tuple[float, util.List[str]]:
"""
Returns negative log likelihood of seeing parameters p.
"""
failing = []
nllf = 0.0
for p in self._bounded:
p_nllf = p.nllf()
nllf += p_nllf
if p_nllf == np.inf:
failing.append(str(p))
# print "; ".join("%s %g %g"%(p,p.value,p.nllf()) for p in
# self._bounded)
return nllf, failing
[docs]
def parameter_residuals(self):
"""
Returns negative log likelihood of seeing parameters p.
"""
return [p.residual() for p in self._bounded]
[docs]
def chisq_str(self):
"""
Return a string representing the chisq equivalent of the nllf.
If the model has strictly gaussian independent uncertainties then the
negative log likelihood function will return 0.5*sum(residuals**2),
which is 1/2*chisq. Since we are printing normalized chisq, we
multiply the model nllf by 2/DOF before displaying the value. This
is different from the problem nllf function, which includes the
cost of the prior parameters and the cost of the penalty constraints
in the total nllf. The constraint value is displayed separately.
"""
pparameter, pconstraints, pmodel, failing_constraints = self._nllf_components()
chisq_norm, chisq_err = nllf_scale(self)
chisq = pmodel * chisq_norm
text = format_uncertainty(chisq, chisq_err)
constraints = pparameter + pconstraints
if constraints > 0.:
text += " constraints=%g" % constraints
if len(failing_constraints) > 0:
text += " failing_constraints=%s" % str(failing_constraints)
return text
def _nllf_components(self) -> util.Tuple[float, float, float, util.List[str]]:
try:
pparameter, failing_parameter_constraints = self.parameter_nllf()
if isnan(pparameter):
# TODO: make sure errors get back to the user
info = ["Parameter nllf is wrong"]
info += ["%s %g"%(p, p.nllf()) for p in self._bounded]
logging.error("\n ".join(info))
pconstraints, failing_constraints = self.constraints_nllf()
failing_constraints += failing_parameter_constraints
# Note: for hard constraints (which return inf) avoid computing
# model even if soft_limit is inf by using strict comparison
# since inf <= inf is True but inf < inf is False.
penalty_nllf = self.penalty_nllf if self.penalty_nllf is not None else np.inf
pmodel = self.model_nllf() if len(failing_constraints) == 0 else penalty_nllf
return pparameter, pconstraints, pmodel, failing_constraints
except Exception:
# TODO: make sure errors get back to the user
info = (traceback.format_exc(),
parameter.summarize(self._parameters))
logging.error("\n".join(info))
return nan, nan, nan, []
def __call__(self, pvec=None):
"""
Problem cost function.
Returns the negative log likelihood scaled by DOF so that
the result looks like the familiar normalized chi-squared. These
scale factors will not affect the value of the minimum, though some
care will be required when interpreting the uncertainty.
"""
return 2 * self.nllf(pvec) / self.dof
[docs]
def summarize(self):
"""Return a table of current parameter values with range bars."""
return parameter.summarize(self._parameters)
[docs]
def labels(self) -> util.List[str]:
"""Return the list of labels, one per fitted parameter."""
return [p.name for p in self._parameters]
# noinspection PyAttributeOutsideInit
[docs]
def model_reset(self):
"""
Prepare for the fit.
This sets the parameters and the bounds properties that the
solver is expecting from the fittable object. We also compute
the degrees of freedom so that we can return a normalized fit
likelihood.
If the set of fit parameters changes, then model_reset must
be called.
"""
#print("In model reset with", self.model_parameters())
all_parameters = parameter.unique(self.model_parameters())
# print "all_parameters",all_parameters
# for p in all_parameters:
# if hasattr(p, 'reset_prior'):
# p.reset_prior() # no constraints
# else:
# raise ValueError(f"{p} does not have prior")
broken = []
for p in all_parameters:
# slot = p.slot
# value = p.value
# TODO: this is a shim to accomodate Expression, Calculation etc. being
# put into attributes that have type "Parameter" (in user scripts)
# Do we cause those scripts to break instead?
# Or do we autoconvert to .equals()?
if hasattr(p, 'add_prior'):
p.add_prior(p.distribution, bounds=p.bounds, limits=p.limits)
# TODO: currently this logic for showing breaking constraints to the user
# is in the chisq_str execution path instead of on model_reset - should it be here instead?
# While we are walking all parameters check which constraints aren't satisfied
# Build up a list of strings to help the user initialize the model correctly
if hasattr(p, 'limits'):
value = p.value
if (p.limits[0] > value) or (value > p.limits[1]):
broken.append(f"{p}={value} is outside {p.limits}")
elif not np.isfinite(p.prior.nllf(value)):
broken.append(f"{p}={value} is outside {p.prior}")
broken.extend([f"constraint {c} is unsatisfied" for c in self.constraints if float(c) == inf])
if self._constraints_function() == inf:
broken.append("user constraint function is unsatisfied")
if len(broken) > 0:
warnings.warn("Unsatisfied constraints: [%s]" % (",\n".join(broken)))
self.broken_constraints = broken
# TODO: shimmed to allow non-Parameter in Parameter attribute spots.
pars = []
pars_by_id = {}
for p in all_parameters:
if hasattr(p, 'id'):
pars_by_id[p.id] = p
slot = getattr(p, 'slot', None)
if isinstance(slot, Variable) and not p.fixed:
pars.append(p)
self._parameters = pars
self._parameters_by_id = pars_by_id
# TODO: shimmed to allow non-Parameter in Parameter attribute spots.
self._bounded = [p for p in all_parameters if hasattr(p, 'has_prior') and p.has_prior()]
self._dof = self.model_points()
self._dof -= len(self._parameters)
if self.dof <= 0:
warnings.warn(f"Need more data points (currently: {self.model_points()}) than fitting parameters ({len(self._parameters)})")
#self.constraints = pars.constraints()
# Find the constraints on variables and expressions that we need to compute
# parameter_constraints = [p.slot for p in all_parameters if isinstance(p.slot, Variable) and p.has_prior()]
# expression_constraints = [p.slot for p in all_parameters if isinstance(p.slot, Expression) and p.has_prior()]
# self._all_constraints = parameter_constraints + expression_constraints
[docs]
def model_points(self):
"""Return number of points in all models"""
return sum(f.numpoints() for f in self.models)
[docs]
def model_update(self):
"""Let all models know they need to be recalculated"""
# TODO: consider an "on changed" signal for model updates.
# The update function would be associated with model parameters
# rather than always recalculating everything. This
# allows us to set up fits with 'fast' and 'slow' parameters,
# where the fit can quickly explore a subspace where the
# computation is cheap before jumping to a more expensive
# subspace. SrFit does this.
for f in self.models:
if hasattr(f, 'update'):
f.update()
[docs]
def model_nllf(self):
"""Return cost function for all data sets"""
return sum(w**2*f.nllf() for w, f in zip(self.weights, self.models))
[docs]
def constraints_nllf(self) -> util.Tuple[float, util.List[str]]:
"""Return the cost function for all constraints"""
failing = []
nllf = 0.0
nllf = self._constraints_function()
if nllf == np.inf:
failing.append("user constraints function")
for c in self.constraints:
# TODO: convert to list of residuals for Levenberg-Marquardt
c_nllf = float(c)**2
nllf += c_nllf
if c_nllf > 0:
failing.append(str(c))
return nllf, failing
[docs]
def simulate_data(self, noise=None):
"""Simulate data with added noise"""
for f in self.models:
f.simulate_data(noise=noise)
[docs]
def resynth_data(self):
"""Resynthesize data with noise from the uncertainty estimates."""
for f in self.models:
f.resynth_data()
[docs]
def restore_data(self):
"""Restore original data after resynthesis."""
for f in self.models:
f.restore_data()
@property
def has_residuals(self):
"""
True if all underlying fitness functions define residuals.
"""
return all(hasattr(f, 'residuals') for f in self.models)
[docs]
def residuals(self):
resid = np.hstack([w * f.residuals()
for w, f in zip(self.weights, self.models)])
return resid
[docs]
def save(self, basename):
for i, f in enumerate(self.models):
if hasattr(f, 'save'):
f.save(basename + "-%d" % (i + 1))
[docs]
def show(self):
for i, f in enumerate(self.models):
print("-- Model %d %s" % (i, getattr(f, 'name', '')))
subs = self.freevars.get_model(i) if self.freevars else {}
show_parameters(f, subs=subs)
print("[overall chisq=%s, nllf=%g]" % (self.chisq_str(), self.nllf()))
[docs]
def plot(self, p=None, fignum=1, figfile=None, view=None, model_indices=None):
import pylab
if p is not None:
self.setp(p)
for i, f in enumerate(self.models):
if model_indices is not None and i not in model_indices:
continue
if not hasattr(f, 'plot'):
continue
f.plot(view=view)
pylab.figure(i + fignum)
f.plot(view=view)
pylab.suptitle('Model %d - %s' % (i, f.name))
pylab.text(0.01, 0.01, 'chisq=%s' % chisq_str(f),
transform=pylab.gca().transAxes)
if figfile is not None:
pylab.savefig(figfile + "-model%d.png" % i, format='png')
# Note: restore default behaviour of getstate/setstate rather than
# inheriting from BaseFitProblem
def __getstate__(self):
return self.__dict__
def __setstate__(self, state):
self.__dict__ = state
# TODO: consider adding nllf_scale to FitProblem.
ONE_SIGMA = 0.68268949213708585
def nllf_scale(problem: FitProblem):
r"""
Return the scale factor for reporting the problem nllf as an approximate
normalized chisq, along with an associated "uncertainty". The uncertainty
is the amount that chisq must change in order for the fit to be
significantly better.
From Numerical Recipes 15.6: *Confidence Limits on Estimated Model
Parameters*, the $1-\sigma$ contour in parameter space corresponds
to $\Delta\chi^2 = \text{invCDF}(1-\sigma,k)$ where
$1-\sigma \approx 0.6827$ and $k$ is the number of fitting parameters.
Since we are reporting the normalized $\chi^2$, this needs to be scaled
by the problem degrees of freedom, $n-k$, where $n$ is the number of
measurements. To first approximation, the uncertainty in $\chi^2_N$
is $k/(n-k)$
"""
dof = problem.dof
if dof <= 0 or np.isnan(dof) or np.isinf(dof):
return 1., 0.
else:
#return 2./dof, 1./dof
from scipy.stats import chi2
npars = max(len(problem.getp()), 1)
return 2./dof, chi2.ppf(ONE_SIGMA, npars)/dof
def load_problem(filename, options=None) -> FitProblem:
"""
Load a problem definition from a python script file.
sys.argv is set to ``[file] + options`` within the context of the script.
The user must define ``problem=FitProblem(...)`` within the script.
Raises ValueError if the script does not define problem.
"""
# Allow relative imports from the bumps model
module_name = os.path.splitext(os.path.basename(filename))[0]
module = util.relative_import(filename, module_name=module_name)
ctx = dict(__file__=filename, __package__=module, __name__=module_name)
old_argv = sys.argv
sys.argv = [filename] + options if options else [filename]
source = open(filename).read()
code = compile(source, filename, 'exec')
exec(code, ctx)
sys.argv = old_argv
problem = ctx.get("problem", None)
if problem is None:
raise ValueError(filename + " requires 'problem = FitProblem(...)'")
return problem
def MultiFitProblem(*args, **kwargs) -> FitProblem:
warnings.warn(DeprecationWarning("use FitProblem directly instead of MultiFitProblem"))
return FitProblem(*args, **kwargs)
def test_weighting():
class SimpleFitness(Fitness):
def __init__(self, a=0., name="fit"):
self.a = parameter.Parameter.default(a, name=name+" a")
def parameters(self):
return {'a': self.a}
def numpoints(self):
return 1
def residuals(self):
y, dy = 0, 1 # fit to constant 0 +/- 1
return np.array([(self.a.value - y)/dy])
def nllf(self):
return sum(r**2 for r in self.residuals())/2
weights = 2, 3
models = [SimpleFitness(4.0), SimpleFitness(5.0)]
problem = FitProblem(models, weights=weights)
# Need to use problem.models to cycle through models in case FreeVariables is used in problem
assert (problem.residuals() == np.hstack([w*M.residuals() for w, M in zip(weights, problem.models)])).all()
assert problem.nllf() == sum(w**2*M.nllf() for w, M in zip(weights, problem.models))
assert problem.nllf() == sum(problem.residuals()**2)/2